

User Manual

3 Axis Horizontally Symmetric Ultrasonic Anemometers

1199-PK-102 (HS-50)

1199-PK-085 (HS-100)

Document Number: 1199-PS-0035 Issue 4

Gill Instruments Limited Saltmarsh Park, 67 Gosport Street, Lymington, Hampshire, SO41 9EG, UK Tel: +44 1590 613500, Fax: +44 1590 613555 Email: <u>anem@gillinstruments.com</u> Website: <u>www.gillinstruments.com</u>

Table of Contents

1. We	lcome to the HS-50 & HS-100 user manual	4
1.1.	About this manual	4
1.2.	Overview of Content	4
1.3.	Description of Icons	5
1.4.	General Notes	5
1.5.	CE, UKCA, FCC conformity	6
1.6.	User Manual Revision History	6
2. Inst	allation	7
2.1.	Handling Instructions	7
2.2.	Installation Guidelines	8
2.3.	Mounting	8
2.4.	Polar definition	8
2.5.	U, V, and W axes definition	8
2.6.	Alignment, Dimensions & Orientation	9
2.7.	Mechanical Installation	
2.8.	Location	
2.9.	Earthing	
2.10.	Cabling	
2.11.	Cabling Length	11
3. Ope	eration	
3.1.	Overview	
3.2.	Operating Modes	
3.3.	Measurement Mode	
3.4.	Sampling	
3.5.	Averaging (and Output Rate)	
3.6.	Wind Measurement, SoS and Temperature Reporting Format	
3.7.	Analogue Input Reporting Formats	
3.8.	Diagnostics	
3.9.	Confidence Tone	
3.10.	Result Reporting	
3.11.	Interactive Mode	14
3.12.	Configuration Commands	
3.13.	Interrogation Commands	
3.14.	Default Configuration Command Settings	14
4. Cor	nection	
4.1.	Connecting to PC or other device	
4.2.	Anemometer Connector / Power and Data Connector Hirose 20-way socket	
4.3.	Connection HS To A PC Using RS422	
4.4.	Connecting HS to a PC via Optional Power and Communications Interface	
4.5.	Environmental	
4.6.	PCI/PCIA Operation	
4.7.	Inclinometer Readings	
4.8.	PCI Box (1189-PK-030) HS Analogue Output Connections.	21

4.9. 4.10.	System Connection Diagrams 1199-00-015 Interface Cable	24 25
5. Using 5.1. 5.2. 5.3.	Analogue Inputs with the HS Electronics Unit Analogue Inputs Using the Electronics unit PRT Input Electronics Unit Mounting Details	26 26 27 28
6. Using 6.1.	The Anemometer Digital Outputs Binary Result Message Format (post conversion)	29 29
7. Using 7.1. 7.2. 7.3. 7.4. 7.5.	Analogue Outputs with PCIA box 1189-PK-030 Introduction Analogue Outputs Analogue Sync. Output Analogue Status. Output Test Modes	30 30 31 32 32
Appendix	A - Technical Specification	33
Appendix	B - Cable Assembly	35
Appendix (ASCII F	C - HS Default Setup Result Message Format	<mark>38</mark> 38
Defaul	It Configuration Command Settings	39
Defaul	lt Output Data String	39
Appendix I Softwa	D – Configuring the Anemometer with a PC Running Gill Wind Software are commands Introduction	40 42
Softwa	are Commands	44
Appendix	E – Viewing & Logging the data using Gill Windview software	48
Appendix	F - Status Fields	54
Appendix	G – Instructions for using Windconvert binary to ASCII conversion utility	58
Appendix I Cleani	H - Maintenance & Fault-Finding ng	<mark>60</mark> 60
Servici	ing	60
Fault-f	inding	60
Appendix Bench	I - Tests Test	<mark>61</mark> 61
Head A	Alignment Test	61
Calibra	ation	61
Appendix .	J - Summary of Abbreviations Used In This Manual	62
Appendix	K – Principle of Operation	63

1. Welcome to the HS-50 & HS-100 user manual

1.1. About this manual

This manual describes the operation of the HS-50 (1199-PK-102) and HS-100 (1199-PK-085)

The term HS is used in this manual as a general term for both the HS-50 & HS-100; they are robust three-axis anemometers with no moving parts.

The units of wind speed, output rate and formats are all user selectable.

Both the HS-50 & HS-100 are constructed of stainless steel & can perform measurements in wind speeds up to 45m/s.

The HS-50 can provide an output rate up to 50Hz and the HS-100 can provide an output rate up to 100Hz.

The below software is available free from the Gill website https://gillinstruments.com/downloads/

WIND software. It can be used as a terminal package to configure the anemometers.

WINDVIEW software. It provides a means of viewing data and providing a simple data logging function.

WinConvert software<u>http://gillinstruments.com/main/software.html</u>. It provides a means of converting data gathered in binary format and converting it to a user readable format.

1.2. Overview of Content

The manual is split into 7 chapters. Each chapter represents an activity in the use of the product. Additional detailed information is contained in the Appendices at the end of the manual.

- Chapter 1 explains how the manual is set out
- Chapter 2 provides the information needed to install the product
- Chapter 3 provides the information needed to operate the product
- Chapter 4 provides the information needed to connect the product
- Chapter 5 provides the information needed to use the Analogue Inputs with Sensor Input Unit
- Chapter 6 provides the information needed to use the Digital Outputs
- Chapter 7 provides the information needed to use the Analogue Outputs with PCIA box 1189-PK-030

1.3. Description of Icons

The following icons are used in this manual.

lcon	Description
	A note that is important and that should be observed
i	Information or a recommendation to ensure best results
	The start of a set of instructions

1.4. General Notes

Before HS is used for the first time it is essential to read and understand this manual. Please keep the manual safe for future reference.

Care should be taken with HS-50/100 at all times. The product should be transported to site in the flight case, and only removed when ready to install.

During installation HS should be supported and care should be taken not to drop the product

Care should be taken when wiring the HS-50/100 to power and communications.

Maintenance should be limited to the procedures described in this manual. Additional maintenance or cleaning may damage the sensors.

No attempt should be made to open or repair any of the parts of the product. Any attempt to dismantle any part of the product will invalidate the warranty provided by Gill Instruments.

1.5. CE, UKCA, FCC conformity

This product carries the CE and UKCA marks. A copy of the Declaration of Conformity can be downloaded from gillinstruments.com.

HS complies with part 15 of the RCC Rules. Operation is subject to the following two conditions: -

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

1.6. User Manual Revision History

Document Version	Release Date	Key Changes
Issue 4	May 2024	Update to latest format, and update references
		of 1189-PK-020 and 1189-PK-021 to 1189-PK-030
		and 1189-PK-031 respectively.

2. Installation

2.1. Handling Instructions

The HS frame should be stored and transported in the supplied flight case.

If the frame is removed from the flight case (for instance, to carry out a bench test), the protective head cover should be left in place to protect the transducers. If the head cover is removed, care must be taken to protect the transducers from damage/distortion as this will affect the accuracy of the measurements made.

The transducers should not be used to support the weight of the frame if it is rested on a flat surface (such as a table), as this will distort the path lengths. The protective head cover should be left on under these circumstances.

When handling the frame, ensure that it is picked up by the main arm, not the frame around the transducer assembly.

gillinstruments.com

1199-PS-0035 Issue 4 © 2024 Gill Instruments Limited

2.2. Installation Guidelines

As with any sophisticated electronics, good engineering practice should be followed to ensure correct operation.

- Always check the installation to ensure the HS Range is not affected by other equipment operating locally, which may not conform to current standards, e.g. radio/radar transmitters, boat engines, generators etc.
- > Guidelines
 - Avoid mounting in the plane of any radar scanner a vertical separation of at least 2m should be achieved.
 - Radio transmitting antennas, the following minimum separations (all round) are suggested.
 - ♦ VHF IMM 1m
 - ✤ MF/HF 5m
 - Satcom 5m (avoid likely lines of sight)

Use cables recommended by Gill. If cables are cut and re-connected incorrectly (perhaps in a junction box) then EMC performance may be compromised if cable screen integrity is not maintained.

Earth loops should not be created – wire the system in accordance with the installation guidelines.

Ensure the power supply operates to the HS specification at all times.

- Avoid turbulence caused by surrounding structures that will affect the accuracy of the HS such as trees, masts and buildings.
- > The World Meteorological Organisation makes the following recommendation:
- The standard exposure of wind instruments over level open terrain is 10m above the ground. Open terrain is defined as an area where the distance between the sensor and any obstruction is at least 10 times the height of the obstruction.
- If the sensor is to be mounted on a mast boom, part way up a tower or mast, then the boom should be at least twice as long as the minimum diameter or diagonal of the tower. The boom should be positioned on the prevailing wind side of the tower.
- If mounted on a pole then as a guide the distance from an adjacent pole should be 10 times the other pole diameter.
- If mounting on a building then as a guide the sensor should be mounted at a height of 1.5 times the height of the building.

2.3. Mounting

Please see pages 6 to 8 for detailed information on the physical mounting of the HS.

2.4. Polar definition

The wind speed in the UV plane, with direction in degrees from 0 to 359°, with respect to the Reference spar (which is normally aligned to North).

2.5. U, V, and W axes definition

See Figure 2 for detailed diagrams.

+U is defined as towards the direction in line with the north spar as indicated in the diagram.

+V is defined as towards the direction of 90 degrees anti-clockwise from N / the Reference spar.

+W is defined as vertically upwards.

Note, when the unit is configured for the ALIGN AXIS setting the UV definition rotates 30 degrees anti-clockwise such that U is now in line with transducer axis 1.

IS-10

2.6. Alignment, Dimensions & Orientation

It is recommended that the head is aligned so that the upper transducer sphere is directly above the lower transducer sphere. The inclinometer has been calibrated to read zero on both axes when this position is reached.

Figure 2 shows the direction and polarity for the UVW axes.

Figure 3 shows the dimension & alignment information for the system.

Figure 2 Polarity of axes.

Figure 3 Dimensions & alignment details.

2.7. Mechanical Installation

Before installing, it is strongly recommended that a bench test is carried out.

2.8. Location

Select a position so that the unit is clear of any structure, which may obstruct the airflow or induce turbulence. Do NOT mount the HS in close proximity of high-powered radar or radio transmitters. A site survey may be required if there is any doubt about the strength of external electrical noise.

2.9. Earthing

For maximum protection against lightning the anemometer must be earthed via its mountings. The Electronics unit and PCI/PCIA should be earthed using the earth studs provided.

Inadequate grounding will degrade anemometer performance, particularly in the presence of radio frequency interference.

The unit MUST be connected to an appropriate grounding point with a minimum of 6mm² copper wire, via the M4 base screws. The primary earth for the anemometer must be provided via the earth stud and not via the cable screens.

2.10. Cabling

Ensure that strain relief measures are employed when installing the cables. Do not allow the whole weight of a cable to be applied to the connector.

An RS422 compatible cable should be used, with the number of twisted pairs matching the application.

Generic description – Twisted pairs with drain wire, screened with aluminised tape, with an overall PVC sheath. Typical Wire size 7/0.2mm (24AWG), 22AWG wire may also be used.

The table shows some suitable manufacturers' references; other manufacturers' equivalents can be used.

No. of pairs	Gill ref.	Belden ref.	Batt electronics ref.		
9	026 - 02663	8774	91009		

The cable allows for the connection of all: -Power inputs. Digital data inputs and outputs.

Other example twisted pair screened cable types (24AWG) are:-

No. of pairs	Gill ref.	Belden ref.	Batt electronics ref.
2	-	9729	-
3	026 - 02660	9730	91030
4	026-03156	9728	91199
6	-	9731	91031

2.11. Cabling Length

Communication format	Baud rate	Max. cable length
RS232 (PCIA Output)	9600	6.5 m (20 ft) or if using Cat 5 cable see manufacturers recommendations
RS422	9600	1 km (3200 ft)
Analogue outputs - voltage	N/A	6.5 m (20 ft)

The maximum cable length is dependent on the chosen communication format (RS232, RS422 or RS485), the baud rate, and, to a lesser extent, on the cable type and the local electrical 'noise' level.

The above table shows the typical maximum lengths at the given baud rates, using the recommended cable. If any problems of data corruption etc. are experienced, then a slower baud rate should be used. Alternatively, a thicker or higher specification cable can be tried.

3. Operation

3.1. Overview

- Data output rates up to 100Hz (model dependant).
- Measurement of wind velocities to 45ms.
- Wind speed accuracy < 1% RMS.
- Configuration carried out via serial port and stored in non-volatile memory.
- High speed, full duplex RS422 interface, operating up to 115200 baud.
- Background diagnostics providing the user with the confidence that the unit is operating correctly.
- Optional Power & Communications Interface with 4 Analogue outputs representing wind speed and Speed of Sound, or Sonic Temperature.

3.2. Operating Modes

The anemometer has two operating modes:

- 1. Measurement mode This is the normal mode of operation, which is the default mode from power up.
- 2. Interactive mode This allows the anemometer to be configured and interrogated.

3.3. Measurement Mode

The principle of operation is described in Appendix K. The parameters sampled are determined by the anemometer's configuration and consist of:

- 1. Wind velocity (axis velocities are always sampled)
- 2. Speed of Sound (SoS)
- 3. Analogue Inputs (6)
- 4. Absolute Temperature (PRT100)

The way in which the results are calculated, formatted and reported depends upon the configuration of the anemometer.

3.4. Sampling

Wind velocity, SoS and analogue inputs are sampled every 10ms, in a fixed sequential pattern. The PRT100 is sampled every 40ms. The measurement sequence is shown in **Figure 12** on page 31.

3.5. Averaging (and Output Rate)

These samples are block averaged before being converted into results. For wind speed, SoS and analogue inputs the number of samples used in the block average can be set to between 1 and 250 (HS-100) or 2 and 250 samples (HS-50).

E.g. Default Average Setting is 5 therefore Output Rate = 100/5 = 20Hz.

The corresponding maximum number of PRT100 samples per result is 62.

3.6. Wind Measurement, SoS and Temperature Reporting Format

The wind measurement can be output in one of the following formats:

- 1. U, V & W, calibrated (m/s)
- 2. U, V & W, uncalibrated (m/s)
- 3. Polar & W, calibrated (° & m/s)
- 4. Polar & W, uncalibrated (° & m/s)
- 5. Axis velocities, uncalibrated (m/s)

In U, V, W mode the alignment of the U and V axes can be selected as follows:-

Axis U in line with Axis 1 when the anemometer is viewed from above.

Spar U is in line with the main spar when viewed from above. In this configuration U, V, W are labelled U', V', W'.

The U, V, W axis alignment options are shown in the relevant U, V, W axis definition drawing, see Figure 2 on page 9

The axis alignment can be selected using the Configuration menu and the ALIGNUVW command if using your own PC software.

The speed of sound measurement results can be output in one of the following formats:

- 1. Speed of Sound (m/s)
- 2. Sonic Temperature (K)
- 3. Sonic Temperature (°C)

Speed of sound measurements can be disabled.

The absolute temperature measurement results can be output in one of the following formats:

- 1. Absolute Temperature (K)
- 2. Absolute Temperature (°C)

Absolute temperature measurements can be disabled.

3.7. Analogue Input Reporting Formats

If ASCII format is selected, analogue input measurements are output in volts to 4 decimal places. If binary format is selected, analogue input measurements are output in 2's complement. The number of analogue inputs to be measured can be set from 0 to 6.

3.8. Diagnostics

The system reports error codes if a failure is detected of the ultrasonic transducers, non-volatile memory or PRT.

3.9. Confidence Tone

This function is enabled by default, normal instrument operation is indicated by a repetitive audible tone from within the anemometer.

To turn off the Confidence Tone place the unit into Interactive Mode and use the command CTONE DISABLE.

3.10. Result Reporting

The selected parameters are blocked together along with the diagnostic results and block control information to form a result message. The result message can either be in a Binary or ASCII format. In the ASCII format the fields can be padded to form a fixed field size if required. The way the result message is transmitted is dependent on the reporting mode:

1. Continuous mode - the result message is transmitted immediately after calculation.

2. Polled mode - the host pc requests data from the anemometer. The anemometer responds by sending the current result message.

3.11. Interactive Mode

Interactive mode is entered from measurement mode, by sending the anemometer the IM command. (See Appendix D p.27). In this mode the user can communicate with the anemometer, issuing configuration commands to the anemometer, or requesting information from the anemometer.

3.12. Configuration Commands

Configuration commands (see Appendix D) allow the user to configure the anemometer as required. The configuration parameters are held in non-volatile storage, allowing the anemometer to retain its current configuration when powered down.

3.13. Interrogation Commands

Interrogation commands allow the user to request various information from the anemometer.

E.g. ?, CONFIG, EXIT, HELP, IM, SN, VER and VERIFY.

See Appendix D – Configuring the Anemometer with a PC Running Gill Wind Software for more information.

3.14. Default Configuration Command Settings

The Structure of the Factory HS Default Output Data String is as follows:-

Status Codes, U, V, W, Speed of Sound, Checksum.

- 01,08,+00.01,+00.00,+00.00,343.50,12
- 02,18,+00.01,+00.00,+00.00,343.50,10
- 03,00,+00.01,+00.00,+00.00,343.50,18
- 04,00,+00.01,+00.00,+00.00,343.50,1F
- 05,00,+00.01,+00.00,+00.00,343.50,1E
- 06,02,+00.01,+00.00,+00.00,343.50,1F
- 07,00,+00.01,+00.00,+00.00,343.50,1C
- 08,09,+00.01,+00.00,+00.00,343.50,1A
- 09,FF,+00.01,+00.00,+00.00,343.50,12
- 10,EB,+00.01,+00.00,+00.00,343.50,1D

4. Connection

4.1. Connecting to PC or other device

Connection to a PC or other device requires the use of:

- 1. Either a standard PCI or PCIA
- 2. Or a suitable alternative power supply and RS422 conversion unit, which meets the specification of the anemometer.

The PCIA supplies power for the anemometer and provides conversion of the RS422 signal sent by the anemometer and the RS232 signal required by a PC. The PCIA must be connected to the mains using the AC-DC convertor.

The anemometer outputs data in RS422 format, which can be reconstituted to analogue via the optional PCIA.

Baud rate options are:

- 1. 2400
- 2. 4800
- 3. 9600
- 4. 19200
- 5. 38400
- 6. 57600
- 7. 115200

If changing a unit to 115200 Baud rate ensure that the connecting device supports 115200 baud e.g. RS422 converter, PC/Laptop etc.).

Data format: 8 data, 1 stop, no parity.

4.2. Anemometer Connector / Power and Data Connector Hirose 20-way socket

Connector pin	Designation
1	Reserved
2	RS422TXB (Data from anemometer)
3	RS422TXA (Data from anemometer)
4	RS422RXB (Data to anemometer)
5	RS422RXA (Data to anemometer)
6	Supply V+
7	Reserved
8	Reserved
9	Chassis
10	Anemometer Sync-
11	Not used
12	Not used
13	Digital 0V, signal ground
14	Supply V-
15	Reserved
16	Reserved
17	Reserved
18	Anemometer Sync +
19	Reserved
20	Reserved
The above voltages are	referenced to signal ground.

gillinstruments.com

4.3. Connection HS To A PC Using RS422

HS Conr	nector		PC with RS422 to RS232/USB convertor
Signal Names	20 way Pin No's		Signal Name
RS422 Tx+	2	$ \longrightarrow $	RS422 Rx+
RS422 Tx-	3	├──_/───>	RS422 Rx-
RS422 Rx+	4	k/	RS422 Tx+
RS422 Rx-	5	k/	RS422 Tx-
Digital 0v	13	 	Signal Gnd
Supply V+	6	·/	+ DC Supply (9-30v)
Supply V-	14	<u>}/</u>	- DC Supply (0v)

Figure 4 Connections between HS and PC using RS-422.

4.4. Connecting HS to a PC via Optional Power and Communications Interface

Dependent upon system requirements the HS unit can be operated with the Power and Communications and Interface unit (PCI) or Analogue Output version (PCIA). Connect HS via RS422 port; then connect computer to RS232 port on PCI/PCIA.

HS 20 Way Connector			l 15 Wa Con	PCI y D Type nector	PCI R 9 Way Conn	S232 D Type ector		Com 9 Way Con	nputer 7 D Type nector
Signal Name	Pin No's	_	Pin No's	Signal Name	Signal Name	Pin No's		Pin No's	Signal Name
TX (+)	2		2	RXB (+)					
TX (–)	3		9	RXA (–)	DCD	1			
		_			ΤX	2	>	2	RX
RX (+)	4		3	TXB (+)					
RX (–)	5	◄_/	10	TXA (–)					
					RX	3	◀	3	ΤX
					DTR	4			
					GND	5		5	GND
					DSR	6			
Digital 0v	13		4	DIGITAL 0V	RTS	7			
					CTS	8			
					RI	9			
POWER V+	6		5	POWER V+					
POWER OV	14	↓	11	POWER 0V					

Figure 5 Electrical connections between HS and PCI, and between PCI and PC.

4.5. Environmental

The Desktop PCI/PCIA is intended for use in a protected environment and provides interfacing to a single anemometer. RS232 and RS422 ports are provided. The PCI/PCIA is not intended for outdoor use.

4.6. PCI/PCIA Operation

There are three Red LEDs on the PCI/PCIA front panel.

When the PCI/PCIA box is powered, the Power LED will illuminate.

When a HS is connected as above to the PCI/PCIA box and is set to output continuous data the box RX LED will flash on/off at the HS output rate thus giving a good indication that the HS output is wired to the correctly and outputting RS422 data correctly.

If the PCI/PCIA RS 232 connection is connected to a computer then when a terminal programme is opened and commands sent by a PC keypad or program to the box its TX LED will illuminate intermittently indicating a good connection between the PC and the box. Connector Pin and Cable Assignments for PCI/PCIA are as follows:-.

And	Anemometer Connector 15 – Way					
Pin	Designation					
1	Screen					
2	RS422_RXB (+)					
3	RS422_TXB (+)					
4	Digital 0V, Signal ground					
5	Supply V+					
6	Anemometer Sync +					
7	Not used					
8	Anemometer Sync -					
9	RS422_RXA (-)					
10	RS422_TXA (-)					
11	Supply V-					
12	Not Used					
13	Not Used					
14	Not used					
15	Not Used					

External, DC Supply 4 - Way

Anemometer Only V-

Anemometer Only V+

Designation Interface Box V+

Interface Box V-

Pin

1

3

4

RS232 Output - 9 way				
Pin	Designation			
1	DCD			
2	TX data			
3	RX data			
4	DTR			
5	Signal Ground			
6	DSR			
7	RTS			
8	CTS			
9	RI			

RS422/	RS422/Network Input 9 Way					
Pin	Designation					
1	Not connected					
2	Not connected					
3	Not connected					
4	RS422_RXA (-)					
5	Signal ground					
6	RS422_TXA (-)					
7	RS422_TXB (+)					
8	RS422_RXB (+)					
9	Earth					

Sync/	Auxiliary Output 9 Way
Pin	Designation
1	Not Used
2	Not Used
3	Not Used
4	Not Used
5	Not Used
6	Anemometer Sync +
7	Anemometer Sync -
8	Not Used
9	Not Used

Figure 6 External DC supply Amphenol C91A screw lock 4-way socket, e.g. T3301 001. View looking at pins.

4.7. Inclinometer Readings

The following data string information is taken from an Anemometer, the Inclinometer data readings are in bold.

Each column represents the following information:.

Sa: Status Address in the range of 00-10

Where for Inclinometer readings 07: inclinometer x axis MSB, 08: inclinometer x axis LSB, 09: inclinometer y axis MSB, 10: inclinometer y axis LSB.

The above data are output as 16-bit twos complement numbers. In ASCII output format two hex characters are output for each status address.

Sb: Status Data

For the conditions when Sa=07-10, Then Sb gives Inclinometer data as 16-bit twos' complement numbers expressed with two hex characters.

All these hex values should first be translated into decimal values.

Then they can be converted into a physical unit of degrees by multiplying 0.01.

- e.g. X axis reads 0301 when converted reads +7.69 degrees.
 - Y axis reads 0200 when converted reads +5.12 degrees.

However, if the left most bit of the Hex value in Binary is set then the number is likely to be negative so apply 2's complement, convert to decimal and multiply the result by 0.01.

E.g. if the Hex reading is F188 Then F188 Xor FFFF = 0E77 0E77 + 1 = 0E78Convert 0E78 to decimal = 3704 Multiply by 0.01 = -37.04 degrees (not forgetting -ve sign)

Positive and negative x values are the tilt angles of Research Unit as illustrated in the diagrams below.

Similarly, the positive and negative y values are as illustrated below.

Figure 7 Inclinometer polarity diagram.

Inclinometer data in degrees can be obtained by placing the unit into Interactive Mode (IM) and typing INCL, the unit will report the inclination of the Anemometer.

The Format is \pm XX.XX, \pm YY.YY.

4.8. PCI Box (1189-PK-030) HS Analogue Output Connections.

Function	PCIA Box 25 Way D Type Connector
1	Analogue Ground 1
2	Analogue Ground 2
3	Analogue Ground 3
4	Analogue Ground 4
5	Analogue Ground 5
6	Analogue Ground 6
7	Analogue Ground 7
8	Analogue Ground 8
9	Test Pin 1
10	Signal Ground
11	Earth
12	Signal Ground
13	Signal Ground
14	Analogue Output 1
15	Analogue Output 2
16	Analogue Output 3
17	Analogue Output 4
18	Analogue Output 5
19	Analogue Output 6
20	Analogue Output 7
21	Analogue Output 8
22	Test Pin 2
23	Earth
24	Status Output
25	Sync Output

The **analogue outputs** have the following specification: Full scale range: -2.5v to +2.5v Accuracy: 0.25% of full scale (9 bits) Resolution: 14 bits over $\pm 3.0v$ Settling time: 2ms to 0.25% accuracy (note that the minimum time between Samples is 10ms) Output resistance: <0.5 Ω at frequencies below 100Hz, short circuit proof Load resistance: Greater than 10k Ω Load capacitance: Between 0 and 1000pF (e.g. up to 10m of coaxial cable)

Test 1, Test 2 Inputs

Logic high (inactive) +3V to +5V or open circuit Logic low (active) <1V The above voltages are referenced to signal ground.

Analogue Sync and Status Outputs

Both Sync and status outputs conform to the following electrical specification: Output Voltages: high +3V to +5V (Referred to signal ground) low <1V Output resistance: <100 Ω , short circuit proof Load resistance: Greater than 10k Ω Load capacitance: Between 0 and 1000pF (e.g. 10m of coax)

Figure 8 Indoor PCI unit dimensions.

gillinstruments.com

1199-PS-0035 Issue 4 © 2024 Gill Instruments Limited

4.9. System Connection Diagrams

Figure 9 System connection diagram.

4.10. 1199-00-015 Interface Cable

The 1.6 metre 1199-00-015 cable supplied allows for connection between the HS Frame and the Electronics Unit.

Figure 10 Cable structure.

5. Using Analogue Inputs with the HS Electronics Unit

The supplied HS Electronics Unit allows the user to integrate up to 6 analogue inputs into the HS digital string, together with a PRT input. It is designed for outdoor use please see section 5.3 for mounting details.

5.1. Analogue Inputs

The Electronics Unit provides six differential analogue inputs of 14 bit resolution. A specification for these is given in Appendix A - Technical **Specification**. This feature allows the user to power extra equipment local to the Electronics Unit and to take analogue data from that equipment. The anemometer digitises the analogue data and appends it to the digital data string

A sensor supply voltage is available at each connector. The voltage at this connector is the supply voltage **at the HS Electronics Unit** minus 1.5 volts. The sensor supply voltage is internally regulated to 21±2 volts for SIU supply voltages above 22 volts.

For sensors with a common supply and signal ground, this ground should be connected to Sensor Supply. In this situation Analogue Input - should be connected to Sensor Supply - and Analogue Ground left floating.

The total current drawn from the sensor supply by all the external sensors must not exceed 70mA.

Sensor connector pin out:

- 1 Sensor power -
- 2 Analogue input 1+ / 3+ / 5+
- 3 Analogue ground
- 4 Analogue input 1-/3-/5-
- 5 Analogue input 2+ / 4+ / 6+
- 6 Analogue input 2-/4-/6-
- 7 Sensor power +
- 5 Chassis/screen

5.2. Using the Electronics unit PRT Input

The Sensor Input Unit is set up to operate with any 4 wire PRT conforming to IEC 751 or DIN 43760.

PRT connector pin out:

- 1 Sensor power +
- 2 Analogue input 6 +
- 3 Analogue input 6 -
- 4 Analogue ground
- 5 PRT excitation +
- 6 PRT excitation -
- 7 PRT sense +
- 8 PRT sense -
- 9 Sensor power -
- 10 Chassis/screen

PRT connection diagram:

For correct operation the PRT connections must be isolated from the rest of the system.

5.3. Electronics Unit Mounting Details

Figure 11 Unit mounting details.

6. Using The Anemometer Digital Outputs

6.1. Binary Result Message Format (post conversion)

01	10	176	00.1	00.0	350.4	+99.99	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	2B
StaA	StaD	Wc1	Wc2	Wc3	С	Abs T	An1	An2	An3	An4	An5	An6	CC

where:		
0xBA 0xBA	-	Start of result message identifier. 2 bytes, hex value BA.
StaA	-	Status Address
StaD	-	Status Data
Wc1	-	Wind component 1
Wc2	-	Wind component 2
Wc3	-	Wind component 3
С	-	Speed of Sound or Sonic Temperature
Т	-	Absolute temperature
An	-	Analogue input n
CC	-	checksum of all bytes. The checksum is an exclusive OR of all bytes excluding the 2 start bytes.

These fields are defined as follows: Wind Component Fields

UVW format	Wc ₁	U axis velocity in 0.01ms ⁻¹ units (Two's complement signed)
	Wc ₂	V axis velocity in 0.01ms ⁻¹ units (Two's complement signed)
	Wc ₃	W axis velocity in 0.01ms ⁻¹ units (Two's complement signed)
Polar format	Wc ₁	U V plane velocity direction in ° relative to N.
	Wc ₂	U V plane velocity magnitude in 0.01ms ⁻¹ units.
	Wc ₃	W axis velocity in 0.01ms ⁻¹ units (Two's complement signed)
Axis Speeds	Wc ₁	Ultrasonic axis 1 velocity in 0.01ms ⁻¹ units (Two's complement signed)
	Wc ₂	Ultrasonic axis 2 velocity in 0.01ms ⁻¹ units (Two's complement signed)
	Wc ₃	Ultrasonic axis 3 velocity in 0.01 ms^{-1} units (Two's complement signed)

Speed of Sound Field

Speed Of Sound	Speed of sound in 0.01ms ⁻¹ units (Unsigned)
Sonic Temperature	Sonic temperature in 0.01K (Unsigned)
	or 0.01°C (Two's complement signed)

Absolute Temperature Field

Absolute Temperature in 0.01K (Unsigned) or 0.01°C (Two's complement signed)

Analogue Input Fields (if using an SIU Box)

 Analogue input value in twos complement:

 0000
 0.0000V

 1FFF
 +4.9994V

 E000
 -5.0000V

Checksum Field Exclusive OR of all bytes excluding the two start bytes.

gillinstruments.com

1199-PS-0035 Issue 4 © 2024 Gill Instruments Limited

7. Using Analogue Outputs with PCIA box 1189-PK-030

7.1. Introduction

Analogue outputs can be provided by using the optional PCIA. The analogue output card decodes the serial message from the anemometer and generates the appropriate analogue outputs. Seven analogue outputs are provided of 14-bit resolution. The pin assignment for these is given in Section 4.9.

7.2. Analogue Outputs

Channels 1,2 and 3 -Wind Direction

These channels represent the wind velocity. The variables represented by each channel depend on the anemometer's operating mode, and are defined in the following table:

	Output Channel					
Mode	1 2 3					
UVW	U	V	W			
Polar format	Dir.	Mag.	W			
Axis velocities	Axis 1	Axis 2	Axis 3			

For U, V and W magnitude, and axis velocities, ± 2.5 V represents ± 10 , ± 20 , ± 30 or ± 60 m/s as selected when configuring the anemometer. For direction in polar format the ± 2.5 V output range represents either 360° or 540°. This option is also set up when configuring the anemometer.

The direction representation is:

	Output voltage (V)							
	-2.5 0.833 0 +0.833 +2.5							
360°	-180°		0°		+180°			
540°	0°	180°		360°	+540°			

The 540° mode avoids the output oscillating between -2.5V and +2.5V in response to a direction varying around 180°.

Channel 4 - Speed of Sound or Sonic Temperature

The variable represented by this analogue output also depends on the configuration of the anemometer's speed of sound or sonic temperature. The representations for each available mode are:

	Output voltage (V)						
	-2.5 -1.667 0 +2.5						
Speed of Sound	300	311.67	335	370			
Sonic temperature (Kelvin)		233.15	273.15	333.15			
Sonic temperature (Celsius)	-40 0 +60						

Channel 5 - Absolute Temperature

The voltage output at a given temperature is independent of the anemometer's temperature output configuration. The following table shows the mapping between voltage and temperature:

	Output voltage (V)			
	-1.667 0 +2.5			
Celsius	-40	0	+60	
Kelvin	233.15	273.15	273.15 333.15	

© 2024 Gill Instruments Limited

1199-PS-0035 Issue 4

Channel 6 - Reserved for future expansion

This analogue output is not currently used.

Channel 7 and 8 - Analogue Inputs/Outputs

Channels 7 and 8 echo the voltage on the lowest two analogue inputs that are enabled i.e. the first two in the serial data message from the anemometer. The analogue inputs at the anemometer are in the range \pm 5V. The analogue outputs have a range of \pm 2.5V. The voltage output is half the analogue input value. For example an analogue input of +5V is echoed at +2.5V.

7.3. Analogue Sync. Output

A logic 1 on the Sync/Auxiliary output (pins 6 & 7 of the 9-way D type connector on the PCI/A) indicates that the analogue outputs have settled. A logic 0 is generated during the period when the analogue outputs are being updated (approximately 2ms duration). For full specifications please see section 5.9.

1	1	2	2	3	3		
$L \rightarrow U$	U→L	L→U	U→L	L→U	U→L		
1	2	3	4	5	6		PRT
1.14mS	1.14mS	1.14mS	1.14mS	1.14mS	1.14mS	0.88mS	0.88mS
			1	0mS	<u>,</u> , ,		
	1 L→U 1 1.14mS	$1 \qquad 1$ $L \rightarrow U \qquad U \rightarrow L$ $1 \qquad 2$ $1.14mS \qquad 1.14mS$	112 $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ 1231.14mS1.14mS1.14mS	1122 $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ $U \rightarrow L$ 123412341.14mS1.14mS1.14mS1.14mS1.14mS1.14mS11.14mS1.14mS	11223 $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ 12345123451.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS10mS	112233 $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ $U \rightarrow L$ $L \rightarrow U$ $U \rightarrow L$ 1234561234561.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS1.14mS	1 1 2 2 3 3 L→U U→L L→U U→L L→U U→L 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 1.14mS 1.14mS 0.88mS 1.14mS 1.14mS 1.14mS 1.14mS 0.88mS

Measurement Sequence

Figure 12 Measurement sequence diagram.

NOTES:

- 1. $L \rightarrow U$ indicates lower to upper transducer firing
 - $U \rightarrow L$ indicates upper to lower transducer firing
- 2. Serial output of the previous measurement commences as SYNC goes high

7.4. Analogue Status. Output

A logic 1 on the status output (pin 24 wrt signal ground of the 25-way D type connector on the PCIA) indicates that the analogue outputs are valid (i.e. the full set of configuration data have been received from the anemometer and there are no data errors for the current output data). The pin assignment and electrical specification of the status output are contained in Section 4.9.

7.5. Test Modes

The analogue output system includes two self-test modes. They are activated by the pulling low the relevant pin on the 25-way D type connector, and remain active until the pin is pulled high or allowed to go open circuit. The pin assignment and electrical specification are contained in section 4.9. Pulling Test Pin 1 low causes all eight analogue outputs to simultaneously cycle through the following sequence of voltages: -2.50v, -1.25v, 0.00v, 1.25v, 2.50v

The outputs remain at each voltage for four seconds so that the sequence repeats every twenty seconds.

Pulling Test Pin 2 low causes the same sequence of voltages to be output on each channel in turn, while the unused channels are held at 0.00v, i.e. the sequence is first output on channel 1, then channel 2, then 3 etc. For this test the complete sequence lasts 160 seconds.

Appendix A - Technical Specification

Parameter	HS-50	HS-100
Outputs		
Data Output rates	From 0.4 to 50Hz	From 0.4 to 100Hz
Measurement Bate	50Hz (Full 3 axis measurement)	100Hz (Full 3 axis measurement)
Format	LIVM/ or Polar (ASCII or Rinary)	LIVW or Polar (ASCIL or Ripan)
i onnat		ovvior oldi (Abeli of billidiy)
Wind Speed		
Range	0 - 45 m/s	0 - 45 m/s
Resolution	0.01m/s	0.01m/s
Wind Speed Accuracy *	<1%RMS @ 12m/s	<1%RMS @ 12m/s
Wind Speed Offset	<±0.01ms	<±0.01ms
·		
Direction		
Range	0 – 359°	0 – 359°
Resolution	1 ⁰	1 ⁰
Directional Accuracy *	<±1°RMS	<±1°RMS
<i>,</i>		
Speed of Sound Measurement		
Measurement Rate	50Hz	100Hz
Range	300 -370 m/s	300 -370 m/s
Resolution	0.01 m/s	0.01 m/s
Accuracy *	$<\pm$ 0.5% (For wind speeds <30ms)	$<\pm$ 0.5% (For wind speeds <30ms)
	·	
Supply Input		
Supply Voltage	9 to 30VDC	9 to 30VDC
Anemometer Supply Current	<300mA for 12VDC Input	<300mA for 12VDC Input
	<150mA for 24VDC Input	<150mA for 24VDC Input
Environmental		
Operating Temperature	-40°C to +60°C	-40°C to +60°C
Storage Temperature	-50°C to +75°C	-50°C to +75°C
Altitude	0 to 3000m	0 to 3000m
Moisture/Dust Protection	IP65	IP65
Humidity	5 % to 100 %	5 % to 100 %
Precipitation	Operation up to 300 mm / hour	Operation up to 300 mm / hour
EMC	Emissions BS EN 50081 -1:1992	Emissions BS EN 50081 -1:1992
	Immunity BS EN 50082 -1:1992	Immunity BS EN 50082 -1:1992
Input/Output Protection	>0.8J	>0.8J
Serial Interface		
Electrical Interface	Full Duplex RS422	Full Duplex RS422
Baud Rates	2/10 /800 0600 10200 28/00 57600	2/00 /800 9600 10200 38/00 57600
שמעת המוכא	2+00, +000, 2000, 12200, 30400, 37000, 115200	2-100, 4000, 2000, 12200, 30400, 37000, 115200
Format	8 data hits 1 stop hit No Parity	8 data hits 1 stop hit. No Parity
romat		o data bits, i stop bit, No Failty
Analogue Inputs		
Sampling Rate: measurement	50Hz Synchronous to wind	100Hz Synchronous to wind
Diff. Input Voltage Range	-5.000V to +5.000V	-5.000V to +5.000V
Accuracy	>0.05% of full scale	>0.05% of full scale
Resolution	14 bits	14 bits
Common Mode Input Range	>+8v	>+8v
Input Impedance	>1MO (Differential)	>1MO (Differential)
mpacimpeddice	>1MQ (Common Mode)	>1MO (Common Mode)
PRT		
Resolution	0.01°C	0.01%
Massurament Accuracy		(.01)
ivieasurement Accuracy		$(\pm 0.1 \text{ C})^{-40} (0 \pm 30 \text{ C})$
	<±0.15 C (+50 l0 +00°C)	<±0.15 C (+50 t0 +00°C)

Anemometer Sync Output	RS422 synchronous to Wind Measurement	RS422 synchronous to Wind Measurement
Inclinometer Range	Monotonic over ±30° of tilt	Monotonic over ±30° of tilt
Resolution Accuracy	$\pm 0.3^{\circ}$ for tilt angles between $\pm 10^{\circ}$	$\pm 0.3^{\circ}$ for tilt angles between $\pm 10^{\circ}$
Null Repeatability Temperature Coefficient-Null Temperature Coefficient –Scale Factor	±0.15° 0.02° per °C 0.2% per °C	±0.15° 0.02° per °C 0.2% per °C

* Accuracy specification HS50-100 applies for wind speeds less than 32m/s and for wind incidence $<\pm 150^{\circ}$ in the horizontal plane and up to $\pm 50^{\circ}$ from the horizontal.

<u>HS-100</u>[™]

Appendix B - Cable Assembly

Figure 13 Pin Connections, contact side of 20-way Hirose.

Figure 14 Pin Connections, rear of 20-way Hirose.

Pin Number	Designation
1	Reserved
2	RS422 Tx+
3	RS422 Tx-
4	RS422 Rx+
5	RS422 Rx-
6	Supply +ve
7	Reserved
8	Reserved
9	Chassis
10	Anemometer Sync -
11	Not Connected
12	Not Connected
13	Digital Ov
14	Supply –ve
15	Reserved
16	Reserved
17	Reserved
18	Anemometer Sync +
19	Reserved
20	Reserved

Assembly of the 20-way Hirose connector is shown below.

Figure 15 Assembly of the 20-way Hirose connector.

The outer sheath needs to be cut back by 45mm and the individual wires need to have their insulation stripped back by 3mm

Figure 16 Assembly of Amphenol C91A Screw Lock Socket.

Appendix C - HS Default Setup

ASCII Result Message Format

2	1	10	176	0.06	0.03	350.4	99.99	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	3	2B	CR
<stx></stx>	StaA	StaD	Wc1	Wc2	Wc3	С	Abs T	An1	An2	An3	An4	An5	An6	<etx></etx>	сс	<term></term>

where:		
<stx> -</stx>		Start of string character (ASCII value 2)
StaA	-	Status Address
StaD	-	Status Data
Wc ₁	-	Wind component 1
Wc ₂	-	Wind component 2
Wc ₃	-	Wind component 3
С	-	Speed of sound/sonic temperature
Т	-	Absolute temperature
A ₁	-	Analogue input 1
A _n	-	Analogue input n.
<etx> -</etx>		End of string character (ASCII value 3)
CC	-	checksum of all characters between <stx> and <etx></etx></stx>
<term> -</term>		<cr> or <cr><lf>, user selectable</lf></cr></cr>

These fields are defined as follows: Wind Component Fields

UVW format	Wc ₁	U axis velocity in 0.01ms ⁻¹ units (±UU.UU)
	Wc ₂	V axis velocity in 0.01ms ⁻¹ units (±VV.VV)
	Wc ₃	W axis velocity in 0.01ms ⁻¹ units (±WW.WW)
Polar format	Wc ₁	U V plane velocity direction in ° relative to N (DDD)
	Wc ₂	U V plane velocity magnitude in 0.01 $\rm ms^{-1}$ units (MM.MM)
	Wc ₃	W axis velocity in 0.01ms ⁻¹ units.(±WW.WW)
Axis Speeds	Wc ₁	Ultrasonic axis 1 velocity in 0.01ms ⁻¹ units ($\pm A_1A_1A_1A_1$)
	Wc ₂	Ultrasonic axis 2 velocity in 0.01ms^{-1} units ($\pm A_2 A_2 A_2 A_2$)
	Wc ₃	Ultrasonic axis 3 velocity in 0.01 ms ⁻¹ units ($\pm A_3 A_3 A_3 A_3$)

Speed of Sound Field

Speed Of Sound	Speed o	f sound in 0.	01ms ⁻¹	units (C	CC.CC)
Sonic Temperatur	re	Sonic temp	erature	in 0.01K	(KKK.KK)
		or 0.01°C (±	ECC.CC)		

Absolute Temperature Field

Absolute Temperature in 0.01K or 0.01°C (TTT.TT)

or 0.01°C (±CC.CC)

Analogue Input Fields (if using an SIU Box)

Analogue input value in volts (±v.vvvv)

Checksum Field

Exclusive OR of all characters between <STX> and <ETX> reported as ASCII hex.

Default Configuration Command Settings

Factory settings are:-

AVERAGE	5
WINDREP	UVW CAL
SOSREP	SONICTEMP K
ABSTEMP	OFF
ANAIP	DDDDDD (DISABLED)
AOPFSD	30
POLARWRAP	360
STRFMT	ASCII UNPAD
ASCTERM	CRLF
ECHO	ON
MSGMODE	CONT
BAUD	9600
CTONE	ON
ALIGN	AXIS
INST	OFF

Default Output Data String

The Structure of the Factory HS Default Output Data String is as follows:-

Status Codes, U, V, W, Speed of Sound, Checksum.

01,00,-00.04,+00.00,+00.03,293.94,1E 02,28,-00.04,+00.00,+00.03,293.94,17 03,00,-00.04,-00.02,+00.03,293.94,18 04,00,-00.05,-00.02,+00.04,293.94,19 05,00,-00.04,-00.03,+00.03,293.95,1E 06,01,-00.05,-00.02,+00.04,293.94,1A

Appendix D – Configuring the Anemometer with a PC Running Gill Wind Software

Wind is a software package from Gill Instruments that is free to download from the Gill Instruments website:

http://gillinstruments.com/main/software.html

It is primarily designed for use with the WindSonic and WindMaster range of anemometers but it is possible to use as a terminal package to communicate with the HS. The tool features are not applicable.

To begin, open the Wind software and select the required serial port.

ଷାଧି Wind		-	ı ×
Port Baudrate Tools E	Exit About		
(GILL Wind Software for configuring :- WindMaster (software 2329-113 onwards) WindMaster Pro (software 2329-113 onwards) WindSonic (Sn. 08100001 onwards) Wind (c) 2016 Gill Instruments Ltd www.gillinstruments.com		
S	Serial Port COM1 COM1 K K K K K K K K K K K K K K K K K K K		
		Baudrate	Port

C Wind I Reudrate Look Exit About

Click on the Baud rate menu and select the required Baud rate to match the HS.

Data will start scrolling in the terminal window (assuming that the HS is configured to output in Gill ASCII mode)

To enter configuration mode, type 'IM', then type config and press the enter key to display the current HS configuration.

G Wind					
Baudrate Tools Exit About					
G Wind Baudrate Look Ext About et al 4440.PxX t+(+)+28-L6xX+48 SRS) COMFIG SRS) COMFIG SRSTEPH CH. AND COMFIG SRSTEPH CH.F SRSTEPH C	"658 t . Ja				<u>-</u> 1
	Software Programs	Baudrate 9600 Wind CH	🔊 Mierocoft Outlook	M Decument Micros	

Software commands Introduction

Command Format

All commands are entered as an ASCII string consisting of a mnemonic, representing the operation, and zero or more parameters separated by spaces and terminated by either <CR> or <CR><LF>. The case of the characters in the command is ignored.

Commands are only valid whilst in the interactive mode, with the exception of the "enter interactive mode" command and polled data request command.

ASCII Output String Termination

The ASCII output string terminator can be configured to be either <CR> or <CR><LF>. The expression <TERM> is used to indicate either one of these string terminators.

Character Echo

Character echo can be enabled or disabled. If enabled, received characters are only echoed while in interactive mode.

The Backspace Character

The anemometer will respond to the <BACKSPACE> character by deleting the previous character from its command buffer, and echo <BACKSPACE><SPACE><BACKSPACE>.

The Escape Character

The anemometer will respond to the <ESC> character by deleting all characters currently in its command buffer, and echo <TERM><TERM>.

Command Responses

Command responses are only issued when in interactive mode.

Configuration Commands

On receipt of a configuration command, the anemometer will respond with a validation message if the command was successfully completed, or an appropriate error message if it was not. If a configuration command is entered with no data parameter, the current data value is returned.

Interrogation Commands

On receipt of an interrogation command, the anemometer responds with the requested information if the command was successfully actioned, or an appropriate error message if it was not.

Invalid Combinations of Commands

It is possible through the setting of various parameters to request a configuration where the required output bit rate exceeds the configured baud rate.

If an issued configuration command requests a parameter change that would cause the above situation, an appropriate error message is generated.

Software Commands

	Option, one option from a list separated by the vertical bar must be included in the command.
0	Parenthesis, used to make the possible combinations unambiguous.
	Option, the symbols within the square braces are optional.
n{}m	Repeat, the symbols inside the braces can be repeated n to m times. If n is not included then 0 is
	implied, if m is not present then infinity is implied.
<>	Non-literal symbol, this represents other non-literal and literal symbols. A
	further definition is required to define this non-literal symbol.
	anotors in bold are the default settings

Note: Parameters in **bold** are the default settings.

?

Syntax:	? followed by sending CR/LF (pressing the Enter Key).
Description:	Request the current results message when in polled mode.

ABSTEMP

Syntax:	ABSTE	ABSTEMP OFF (ON K C)		
Description:	Enable	Enables and disables absolute temperature reporting from the PRT sensor.		
Parameters:	OFF	PRT temperature reporting turned off.		
	ON	PRT temperature reporting turned on.		
	К	PRT temperature reporting in K.		
	С	PRT temperature reporting in °C.		

ALIGNUVW

Syntax:	ALIGNUVW AXIS SPAR
Description:	Selects UVW axis alignment from two alternative definitions.
Parameters:	AXIS Align the U axis to transducer axis 1 when viewed from above.
SPAR	Aligns the U axis with the North spar.

ANAIP

	D Disable specified channels.
Parameters:	ipno Analogue input channel number.
Description:	Turns on or off the specified analogue inputs.
	<ipno> = 1 2 3 4 5 6</ipno>
Syntax:	ANAIP <ipno>{,< ipno> }6(D E)</ipno>

E Enable specified channels.

Example:HS> ANAIP 1,3,5 E HS> VANAIP

AOPFSD

Syntax:AOPFSD 10 | 20 | **30** | 60 (Metres Per Second Only)Description:Specifies the analogue outputs full scale deflection. Used to configure the
analogue output only.

ASCTERM

	CRLF	ASCII output string terminator is <cr><lf>.</lf></cr>
Parameters:	CR	ASCII output string terminator is <cr>.</cr>
Description:	Sets ASCII c	output string terminator.
Syntax:	ASCTERM (CR CRLF

AVERAGE (Output Rate Setting)

Syntax:AVERAGE 2.to.250 (HS-50) or1 to 250 (HS-100)Description:Sets the number of samples used in the block average. Default is 5.Output rate frequency is calculated from 100/Average setting.e.g. Default Average Setting is 5 therefore Output Rate = 100/5 = 20Hz.

If using all 6 analogue inputs then the Average setting must be 50 or more for a Baud rate of 9600, alternatively user a much higher Baud Rate setting.

BAUD

Syntax:BAUD 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200Description:Sets the serial interface baud rate. Selection must be confirmed with a
letter B.

Example of Baud Rate change in a terminal package, assuming HS is in default 9600 Baud:

HS> baud 19200 <CR>

*At this point the Baud Rate of the terminal package must be changed to that of the new setting for the HS, any delay may result in an error message.

Confirm> b <CR> VBAUD HS> exit

Note: In general the more parameters required in the output data string and the faster the output rate the higher must be the Baud rate to get a fully reported data string or change a parameter setting.

CONFIG

Syntax:	CONFIG
Description:	Reports the anemometer's configuration.

CTONE

Syntax:	CTONE ON C)FF DISABLE
Description:	Enables an audible confidence tone	
Parameters:	ON	Enables the confidence tone
	OFF	Disables the tone until the anemometer is next powered
		up.
	DISABLE	Disables the tone until the function is enabled using CTONE ON.

ECHO

ON	Turn on character echoing.
DFF	Turn off character echoing.
Furns on	or off character echoing.
ЕСНО О	FF ON
	ECHO O Turns on DFF DN

EXIT

Syntax:	EXIT
Description:	Exits from interactive mode back to measurement mode.

HELP

Syntax:	HELP
Description:	Reports a brief description of all the available commands.
Syntax:	HELP command
Description:	Reports a description of the command requested.

IM

Syntax: IM Description: Switcher

Switches from measurement mode to interactive mode.

INST

Syntax: Description: INST ON | **OFF** When set to ON, Instantaneous Mode is enabled and no averaging is performed. When set to OFF, Instantaneous Mode is disabled and averaging is performed. In both cases the output rate is determined by the AVERAGE parameter.

MSGMODE

Syntax:	MSGMC	DDE CONT POLL
Description:	Sets the	e message reporting mode.
Parameters:	CONT	Result messages are reported continuously.
	POLL	Result messages are requested by the user.

POLARWRAP

Syntax:	POLARWRAP 360 540
Description:	Specifies the analogue outputs polar reporting wrap angle. Used to
	configure the analogue output box only.

SN

Syntax:SNDescription:Reports the anemometer's serial number.

INCL

Syntax:	INCL
Description	Reports the inclination of the anemometer from the vertical axis.
	The format is ±XX.XX, ±YY.YY

SOSREP

Syntax:	SOSREP OFF SPEED (SOI	NICTEMP K C)
Description:	Sets the speed of sound reporting format.	
Parameters:	OFF SOS reporting is turned off.	
	SPEED	SOS is reported as speed.
	SONICTEMP	SOS is reported as sonic temperature.
	К	Sonic temperature reporting in K.
	С	Sonic temperature reporting in °C.

Example:HS> SOSREP SONICTEMP C <CR> VSOSREP

STRFMT

Syntax: Description:	STRFMT BIN Sets the resu	IARY ASCII (PAD UNPAD) Ilt message string format.
Parameters:	BINARY BIN	ary result message format.
	ASCII	ASCII result message format.
	PAD UNPAD	ASCII fields padded to fixed size (padded with 9's if a measurement is not possible). ASCII fields unpadded (,, shown if a measurement is not possible).
VFR		
Syntax:	VFR	
Description:	Reports the	anemometer's software version.
VERIFY		
Syntax:	VERIFY E/D	
Description:	Enables or d	isables messages to verify that commands have been carried out. The verification
5	message is t	he command name prefixed by "V". e.g. "VAVERAGE" for and "AVERAGE" command.
Parameters:	E enables ve	rification messages.
	D disables ve	enneauon messages.
WINDREP		
Syntax:	WINDREP (JVW POLAR) (CAL UNCAL) AXIS
Description:	Sets the win	d measurement reporting format.
Parameters:	UVW	Reports wind velocity in UVW format.
	POLAR	Reports wind velocity in polar + W format.
	AXIS	Reports wind as axis velocities.
	CAL	Wind results are calibrated.
	UNCAL	Wind results are uncalibrated.

Appendix E – Viewing & Logging the data using Gill Windview software

WindView is a software package from Gill Instruments that is free to download from the Gill Instruments website:

http://gillinstruments.com/main/software.html

It is designed to allow the user to view and log data from a single or multiple anemometers.

Please note that WindView does not allow 2-way communication with the connected anemometer, so any configuration of the HS must take place prior to connection to WindView.

To begin, open the WindView software package and select the required serial port

Open WindView Software.

🎒 Start 🔯 Inbox - Microsoft O... 🖳 Windows Task Man... 🗟 Document1 - Micros... 🗔 Windview 1-00-08

Select Connect from the File Drop down menu.

The Output Format field should match the sensor i.e. Gill Polar, 3 axis UV or NMEA. Select the required COM Port from the menu. Select the required baud rate to match the sensor e.g. 9600 baud. Leave Parity set for none.

Click on Connect.

Data should scroll on screen.

gillinstruments.com

1199-PS-0035 Issue 4 © 2024 Gill Instruments Limited

To Log data use Settings menu and select logging.

Select type of log, in this case continuous with boxes ticked for append time stamp and append record count if required. Select a file directory and file name.

Click on Apply.

gillinstruments.com

1199-PS-0035 Issue 4 © 2024 Gill Instruments Limited

Click on OK

Image: Section of the section of th	8) R			<u> </u>	×
Image: Section Version Section Districts of the section Distribution Distribut	E	ile	G1 WindView		- I X	×
Image: construction of the construc][ני	<u>File Settings Window H</u> elp			*
L Worksits Date		-	GI Anemometer 1		- D ×	_
Image: Construction of the construle of the construction of the constructio		Ч	Windsock Data Graph Options			4
Come soon Sudget Barrier Come soon Sudget Barrier Barier Barier Barier Barrier Barrier Barrier			$\begin{array}{c} 10.5, 600, -0013$	Segmented Logging Foxble Ceale now log file every 10 Record Formating Acpend Files Starp Acpend Files Starp Select File >Log >Start to start boging Directory /Fahame Pieler Directory [Ci-Documents and SettingshademiDelatop]		
		I	0.0 deg (File Name (prefix) R3-50 log file.txt	The second second second second	
		Ш	COM8: 9600 Output Rate:			
		1 I I I I I I I I I I I I I I I I I I I	Select Files-Connect to start	Anti		* * 0 *
		a9_				

To Start the Logging Select File/Log/Start.

To Stop the Logging Select File/Log/Stop.

Example HS data logged Notepad.

B3-S0 temp Gill Log [Anemometer 1]-1.bst - Notepad	_ 8 ×
Bit Edit Egits Edit Edit <th< td=""><td><u> </u></td></th<>	<u> </u>
	٢.

Appendix F - Status Fields

There are a number of different status codes, which give the user information about various aspects of the anemometer. Each of these codes has an address field followed by a data field. The address field defines which particular aspect of the anemometer the following data field refers to. The address fields are defined as follows:

StaA	Status Address
Address	Function
00	Error codes
01	Anemometer configuration
02	Data output configuration 1
03	Data output configuration 2
04	Error code history
05	Transducer gain levels
06	Anemometer Type

In normal operation the anemometer output cycles through the status codes 01 - 06 at each output sample. If the anemometer detects an error then the status code 00 is displayed instead of the next cyclic status code. When the error is cleared, the status codes will continue to cycle from where they were interrupted.

If the error is caused by a transducer pair failure then the error code is displayed until the failure is rectified.

If the error is caused by a memory or PRT failure, then after 16 consecutive failed readings, the error condition is reduced to the error code history status and the error cleared.

The status data is output by the anemometer as a hex value, it needs to be converted to a binary number in order to determine the information provided. For example; a value of **h32** for status address **02** would mean that the anemometer is configured to output in polar 360 wrap, with a full scale deflection of ±10ms and with the SOS reporting sonic temperature in °C.

Example of Reported Transducer Fault on Axis 1:

00,01,,,-20.00,,00

Example of Reported Transducer Fault on all 3 Axes: 00,07,,,-20.00,,06

StaD	Status Data	
Address 0 Bit 0 1 2 3 4 5 6 7	Error codes Function Transducer pair 1 failed. Transducer pair 2 failed Transducer pair 3 failed Reserved Non-volatile memory error PRT failed Reserved Reserved	
Address 0 Bit 0 1 2 3 4 0 1 5 6 7	Anemometer configuration Function Reserved PRT fitted Reserved U, V, W Axis definition (U aligned with transducer axis 1 when viewe from above) U', V', W' Axis definition (U' aligned with the spar) Reserved Reserved Reserved	≥d
Address 0 Bits 1,0 00 01 10 11 Bits 3,2 00 01	Data output configuration 1 Wind mode UVW Wind mode axis Polar 360 wrap Polar 540 wrap ±10ms ⁻¹ Full Scale Deflection ±20ms ⁻¹ Full Scale Deflection	
10 11 Bits 5,4 00 01 10 11 Bits 7,6 00 01 10 11	±30ms ⁻¹ Full Scale Deflection ±60ms ⁻¹ Full Scale Deflection SOS report off SOS report speed of sound SOS report sonic temp. K SOS report sonic temp. C PRT temp. off PRT temp. K PRT temp. C Reserved	

Address 02 is repeated for 8 samples after a power on reset or exit from 'Interactive Mode' to allow the analogue output card or custom PC software to recognise the output configuration.

Bits 2,1,0 000 001 010 011 100	No inputs enabled 1 input enabled 2 inputs enabled 3 inputs enabled 4 inputs enabled 5 inputs enabled 6 inputs enabled
000 001 010 011	No inputs enabled 1 input enabled 2 inputs enabled 3 inputs enabled 4 inputs enabled 5 inputs enabled 6 inputs enabled
001 010 011	1 input enabled 2 inputs enabled 3 inputs enabled 4 inputs enabled 5 inputs enabled 6 inputs enabled
010 011 100	2 inputs enabled 3 inputs enabled 4 inputs enabled 5 inputs enabled 6 inputs enabled
011	3 inputs enabled 4 inputs enabled 5 inputs enabled 6 inputs enabled
100	4 inputs enabled 5 inputs enabled 6 inputs enabled
100	5 inputs enabled 6 inputs enabled
101	6 inputs enabled
110	
111	Not used
Bit 3	
0	Reserved
1	Reserved
Bits 5,4	
00	Reserved
01	Reserved
10	Reserved
11	Reserved
Bits 7,6	
00	Reserved
01	Reserved
10	Reserved
11	Reserved
Address 04	Error code history
Bit	Function
0	Reserved
1	Reserved
2	Reserved
3	Reserved
4	Non-volatile memory error
5	PRT failed
6	Reserved
7	Reserved
5 6 7	PRT failed Reserved

The error history is cleared when the user enters interactive mode.

Address 05 Bits 1.0	Transducer gain levels
00	Channel pair 1 nominal
01	Channel pair 1 @ 50%
10	Channel pair 1 @ 90%
11	Channel pair 1 @ 100%
Bits 3,2	
00	Channel pair 2 nominal
01	Channel pair 2 @ 50%
10	Channel pair 2 @ 90%
11	Channel pair 2 @ 100%
Bits 5,4	
00	Channel pair 3 nominal
01	Channel pair 3 @ 50%
10	Channel pair 3 @ 90%
11	Channel pair 3 @ 100%
Bits 7,6	
Reserved	

Address 06 Anemometer type

Bits 2,1,0	
000	Single axis
001	Omnidirectional or Asymmetric
010	Three Axis Horizontal
011	Reserved
100	Reserved
101	Reserved
110	Reserved
111	Reserved
Bits 7,6,5,4,3 Not u	used.

Appendix G – Instructions for using Windconvert binary to ASCII conversion utility

- WinConvert can be used with the Research & HS range of Gill Anemometers to convert logged Binary data into a readable ASCII format.
- It is available to download from the Gill Instruments website:

http://gillinstruments.com/main/software.html

Once the program has downloaded and started, the following window will be displayed:

ill Anemometer Binary to ASCII Con	verter	X
ile In (BINARY HEX)		
ile Out (ASCII)		
Anemometer Type		41-14 D
C B2	<u>B</u> egin	
C 1. findblacker		
 Windmaster 		

Select the type of anemometer the binary file was generated by (or leave unknown selected if the anemometer type is unknown), click begin to start the process and the following window will be displayed:

Look in: 🚺	Binary Output	•	← 🗈 💣 📰▼	
Name	Ψ		Date modified	T
log1_st	andard_binary.bny		02/01/2007 12:36	B
4	III			•
∢ File name:	III log1_standard_binary.bny		Open	•

Select open and the conversion process begins, once complete the following message will be displayed:

Finished	23
Decoded	451 records
	ОК

The results will be displayed in the main program lower window (together with the field information for the string.:

	in (B	INAF	RYH	IEX)	8																				
05	00	00	85	FF	50	00	34	03	61	OF	A9	12	C7	DF	F9	OF	AA	03	67	FF	EE	FC			
06	01	00	84	FF	56	00	36	03	62	OF	AA	12	C1	DF	F4	OF	AD	02	A9	FF	E7	31			1
07	FF	00	75	FF	38	00	29	03	64	OF	A3	12	C2	DF	F4	OF	A9	03	DO	FF	E7	3E			
08	E8	00	85	FF	2D	00	23	03	63	OF	A7	12	C4	DF	F4	OF	A7	02	DO	FF	EC	C8			
90	FF	00	8C	FF	2D	00	1A	03	64	OF	A3	12	C3	DF	F4	OF	AA	03	E3	FF	EA	D3			
DA	D9	00	75	FF	38	00	1B	03	63	OF	A9	12	C9	DF	FA	OF	AF	02	9F	FF	ED	6D			
01	18	00	73	FF	39	00	2E	03	62	OF	AE	12	CB	DF	FA	OF	AB	04	3C	FF	FO	2D			
02	38	00	88	FF	5C	00	2D	03	65	OF	AA	12	CB	DF	FA	OF	BO	02	D1	FF	ED	7D			
06, 07, 08, 09, 0A,	01 FF E8 FF D9	-01 +01 -01 +01	L.24 L.17 L.23 L.10	1,-(7,-(3,-(5,-(7,-(01. 02.0 02.0 02.0	70, - 00, - 11, - 11, -	H00. H00. H00. H00.	54, 41, 35, 26, 27,	+01+01+01+01	08.0 08.0 08.0 08.0	66 68 67 68 67			525, 567, 543, 567, 531,	-0 -0 -0	.03	84, · 78, · 66, · 72, · 35, ·	-0. -0. -0.	007: 007: 007: 007: 007:	3,-1 3,-1 3,-1 3,-1 7,-1	0.0	506, 531, 543, 525, 494,	-0.0 -0.0 -0.0 -0.0	531 293 293 177 592	-0 -0 -0 -0
•	-	_	_	_	_	_	_	_	_	_	_	111	_	_	_	_	_	_	_	_	_	_	3		+
ř	Ane	emon	neter	Тур	e				Ĩ		_						_							1	
		Hnk	now	n										_								1	About		Close

To save the data, select all the text in the lower window & copy it. Then open up a notepad/word package and paste the data. The file can then be saved.

Appendix H - Maintenance & Fault-Finding

Cleaning

If there is any build-up of deposit on the unit, it should be gently cleaned with a cloth moistened with water and soft detergent. Solvents should not be used, and care should be taken to avoid scratching any surfaces. The unit must be allowed to defrost naturally after being exposed to snow or icy conditions, do NOT attempt to remove ice or snow with a tool.

Do NOT attempt to remove ice or snow with a tool.

Servicing

There are no moving parts or user-serviceable parts requiring routine maintenance. Opening the unit or breaking the security seal will void the warranty and the calibration. In the event of failure, prior to returning the unit to your authorised Gill distributor, it is recommended that:

1. All cables and connectors are checked for continuity, bad contacts, corrosion etc.

- 2. A bench test is carried out as described in Appendix H
- 3. You contact your supplier for advice

Fault-finding

Symptom	Solution								
No output	Check DC power to HS, cable and connections. Check comms settings of HS (<i>as detailed in Section 14</i>) and host system match, including correct Com port. Check unit is in Continuous mode Check that in-line communication devices are wired correctly. It is usual for Anemometer TX to be connected to converter device RX								
Corrupted output	Check Comms settings of HS and host system match. Try using Gill Wind Software/Tools/Synch Comms Try a slower baud rate. Check cable lengths and type of cable.								
One way communication	Check HS and host system are both set to the same protocol RS232, RS422, or RS485. Check wiring is in accordance with the manual.								
Failed / Incorrect HS output, data invalid flag	Check that transducer path is not blocked								

Appendix I - Tests

Bench Test

- 1. Couple the HS to the host system and power supply, using a known working test cable.
- 2. Check that the unit is correctly configured Appendix D
- 3. Check for normal output data, and that the Status Code is OK 00.
- 4. If the status code is other than 00 or 0A, refer to Appendix F (error) codes.
- 5. Use an office fan or similar to check that the unit is sensing wind, turning the unit to simulate changing wind direction and to check that all three axes are functioning.

This a quick functional test. There are no calibration adjustments. (Refer to below section titled calibration)

Head Alignment Test

In ambient temperature conditions (\pm 18°C to \pm 26°C) and in a still air environment, it is possible to perform a check on the head alignment by using the Sonic Temperature reported by the HS as an indicator. Using a PRT as a reference, compare the PRT reported value with the value being output by the HS. These values should be within \pm 3°C of each other within the temperature range specified above. If the Sonic Temperature reports outside of this tolerance range, the HS has potentially suffered head distortion. If this is the case the HS will need to be returned to Gill Instruments for investigation.

Calibration

There are no in-use calibration adjustments; the unit is designed NOT to require re-calibration within its lifetime. Certified calibration

Accuracy at 12 m/s

Wind speed <1% RMS @ 12m/s Direction <±1°RMS

Appendix J - Summary of Abbreviations Used In This Manual

ASCII	American Standard Code for Information Interchange
PCIA	Power & Communications Interface with Analogue Outputs
PCI	Power & Communications Interface
SIU	Sensor Input Unit
PRT	Platinum Resistance Thermometer
RS232	Communications standard
RS422	Communications standard
SoS	Speed of Sound

Appendix K – Principle of Operation

Figure 17 Time of flight details.

Figure 2 shows the direction and polarity of the U, V and W axes. Polar definition

The wind speed in the UV plane, with direction in degrees from 0 to 359 °, with respect to the Reference spar (which is normally aligned to North)

The HS measures the times taken for an ultrasonic pulse of sound to travel from an upper transducer to the opposite lower transducer, and compares it with the time for a pulse to travel from lower to upper transducer.

Likewise times are compared between each of the other upper and lower transducers.

As Figure 1 shows, the air velocity along the axis between each pair of transducers can then be calculated from the times of flight on each axis.

This calculation is independent of factors such as temperature.

From the three axis velocities, the wind speed is calculated, as either signed U, V, and W, or as Polar and W.

It can be seen from Figure 1 that the speed of sound in air can be calculated from the times of flight. From this the sonic temperature can be derived from the formula $T_{s_1} = C_1^2 / 403$

Where

 T_{s1} = Sonic temperature

 $\mathbf{C}_1 = \text{Speed of sound}$

The above formula does not account for the effect of Humidity. Crosswind correction is applied to results.

